
Written Exam Economics Summer 2020

Introduction to Programming and Numerical Analysis

Date 16th – 18th May 2019

This exam question consists of 6 pages in total.

(An electronic version of the notebook with the exam questions is also available).

Answers only in English.

You should hand-in a single zip-file named with your groupname only. The zip-file should contain:

1. A general README.md for your portfolio
2. A Feedback.txt file with a list of the groups each group member have given peer feedback to
3. Your inaugural project (in the folder /inauguralproject)
4. Your data analysis project (in the folder /dataproject)
5. Your model analysis project (in the folder /modelproject)
6. Your exam project (in the folder /examproject)

Be careful not to cheat at exams!

Exam cheating is for example if you:

 Copy other people's texts without making use of quotation marks and source referencing, so that it

may appear to be your own text

 Use the ideas or thoughts of others without making use of source referencing, so it may appear to be

your own idea or your thoughts

 Reuse parts of a written paper that you have previously submitted and for which you have received a

pass grade without making use of quotation marks or source references (self-plagiarism)

 Receive help from others in contrary to the rules laid down in part 4.12 of the Faculty of Social Science's

common part of the curriculum on cooperation/sparring

You can read more about the rules on exam cheating on your Study Site and in part 4.12 of the
Faculty of Social Science's common part of the curriculum.

Exam cheating is always sanctioned by a written warning and expulsion from the exam in question. In

most cases, the student will also be expelled from the University for one semester.

In [1]:

import numpy as np

Linear regression
Consider the following linear equation:

= + + +yi β0 β1x1,i β2x2,i ϵi

Assume you have access to data of the independent variables (,) and the dependent variable ()
for individuals, where indexes individuals. The variable is a mean-zero stochastic shock.

x1,i x2,i yi

N i ϵi

Assume the data generating process is given by:

In [2]:

def DGP(N):

 # a. independent variables
 x1 = np.random.normal(0,1,size=N)
 x2 = np.random.normal(0,1,size=N)

 # b. errors
 eps = np.random.normal(0,1,size=N)

 extreme = np.random.uniform(0,1,size=N)
 eps[extreme < 0.05] += np.random.normal(-5,1,size=N)[extreme < 0.05]
 eps[extreme > 0.95] += np.random.normal(5,1,size=N)[extreme > 0.95]

 # c. dependent variable
 y = 0.1 + 0.3*x1 + 0.5*x2 + eps

 return x1, x2, y

The data you have access to is:

In [3]:

np.random.seed(2020)
x1,x2,y = DGP(10000)

Question 1: Estimate the vector of coefficients using ordinary least squares (OLS)
implemented with matrix algebra by

where is the transpose of and

β = (, ,)β0 β1 β2

= (X yβ̂ X′)−1X′

X′ X

y = , X =

⎛

⎝

⎜⎜⎜⎜

y1

y2

⋮
yN

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

1

1

⋮
1

x1,1

x1,2

⋮
x1,N

x2,1

x2,2

x2,N

⎞

⎠

⎟⎟⎟⎟⎟

Question 2: Construct a 3D plot, where the data is plotted as scattered points, and the prediction of the
model is given by the plane

= + +ŷ i β̂0 β̂1x1,i β̂2x2,i

Question 3: Esimtate the vector of coefficients using a numerical solver to solve the
ordinary least square problem, shown below, directly. Compare your results with the matrix algebra results.

β = (, ,)β0 β1 β2

(− (+ +)min
β
∑
i=1

N

yi β0 β1x1,i β2x2,i)2

Question 4: Estimate the vector of coefficients using least absolute deviations (LAD)
using a numerical solver to solve the following problem directly:

where is the absolute value of .

β = (, ,)β0 β1 β2

| − (+ +)|min
β
∑
i=1

N

yi β0 β1x1,i β2x2,i

|z| z

Question 5: Set . Repeat the estimation using the OLS and LAD methods times,
drawing a new random sample from the data generating process each time. Compare the estimates from
each method using histograms. Which method do you prefer? Explain your choice.

N = 50 K = 5000

Durable purchases
Consider a household living in two periods.

In the second period it gets utility from non-durable consumption, , and durable consumption, :

where

 is cash-on-hand in the beginning of period 2
 is non-durable consumption
 is pre-commited durable consumption

 is extra durable consumption
 is the risk aversion coefficient

 is the utility weight on non-durable consumption
 implies that extra durable consumption is less valuable than pre-comitted durable

consumption
the second constraint ensures the household cannot die in debt

c d + χx

(, d)v2 m2

s.t.

x

c

= max
c

((d + χxcα)1−α)1−ρ

1 − ρ

= − cm2

∈ [0,]m2

m2

c

d

x = − cm2

ρ > 1
α ∈ (0, 1)
χ ∈ (0, 1)

The value function measures the household's value of having at the beginning of period 2
with precomitted durable consumption of . The optimal choice of non-durable consumption is denoted

. The optimal extra durable consumption function is .

(, d)v2 m2 m2

d

(, d)c∗ m2 (, d) = − (, d)x∗ m2 m2 c∗ m2

Define the so-called end-of-period 1 value function as:

where

and

 is assets at the end of period 1
 is the discount factor

 is the expectation operator conditional on information in period 1
 is income in period 2

 is the level of income risk (mean-preserving)
 is the return on savings

w(a, d) ≡ β [(, d)]E1 v2 m2

m2

y

= (1 + r)a + y

=

⎧

⎩
⎨
⎪⎪

⎪⎪

1 − Δ

1

1 + Δ

with prob. 1
3

with prob. 1
3

with prob. 1
3

a

β > 0
E1

y

Δ ∈ (0, 1)
r

In the first period, the household chooses it's pre-comitted level of durable consumption for the next-period,

where is cash-on-hand in period 1. The second constraint ensures the household cannot borrow. The
value function measures the household's value of having at the beginning of period 1. The
optimal choice of pre-committed durable consumption is denoted .

()v1 m1

a

d

= w(a, d)max
d

s.t.

= − dm1

∈ [0,]m1

m1

()v1 m1 m1

()d∗ m1

The parameters and grids for , and should be:m1 m2 d

In [4]:

a. parameters
rho = 2
alpha = 0.8
beta = 0.96
r = 0.04
Delta = 0.25

b. grids
m1_vec = np.linspace(1e-8,10,100)
m2_vec = np.linspace(1e-8,10,100)
d_vec = np.linspace(1e-8,5,100)

Question 1: Find and plot the functions , , and . Comment.(, d)v2 m2 (, d)c∗ m2 (, d)x∗ m2

Question 2: Find and plot the functions and . Comment.()v1 m1 ()d∗ m1

Hint: For interpolation of consider using interpolate.RegularGridInterpolator([GRID-
VECTOR1,GRID-VECTOR2],VALUE-MATRIX,bounds_error=False,fill_value=None) .

(, d)v2 m2

Next, consider an extension of the model, where there is also a period 0. In this period, the household
makes a choice whether to stick with the level of durables it has, , or adjust its stock of durables,

. If adjusting, the household loses a part of the value of its durable stock; more specificaly it incurs a
proportional loss of .

Mathematically, the household problem in period 0 is:

z = 0
z = 1

Λ ∈ (0, 1)

(,)v0 m0 d0 = {max
z∈{0,1}

w(,)m0 d0

(+ (1 − Λ))v1 m0 d0

if z = 0

if z = 1

The parameters and grids for and should be:m0 d0

In [5]:

Lambda = 0.2
m0_vec = np.linspace(1e-8,6,100)
d0_vec = np.linspace(1e-8,3,100)

Question 3: For which values of and is the optimal choice not to adjust, i.e. ? Show this in a
plot. Give an interpretion of your results.

m0 d0 z = 0

Gradient descent

Let be a two-dimensional vector. Consider the following algorithm:x = []x1

x2

Algorithm: gradient_descent()

Goal: Minimize the function .

1. Choose a tolerance , a scale factor , and a small number
2. Guess on and set
3. Compute a numerical approximation of the jacobian for by

4. Stop if the maximum element in is less than
5. Set
6. Compute
7. If continue to step 9
8. Set and return to step 6
9. Set

10. Set and return to step 3

f(x)

ϵ > 0 Θ > 0 Δ > 0
x0 n = 1

f

∇f() ≈xn−1
1

Δ

⎡

⎣

⎢⎢⎢

f (+ []) − f()xn−1
Δ

0
xn−1

f (+ []) − f()xn−1
0

Δ
xn−1

⎤

⎦

⎥⎥⎥

|∇f()|xn−1 ϵ

θ = Θ
= f(− θ∇f())f θ

n xn−1 xn−1

< f()f θ
n xn−1

θ = θ

2

= − θ∇f()xn xn−1 xn−1

n = n + 1

Question: Implement the algorithm above such that the code below can run.

Optimizer function:

In [6]:

def gradient_descent(f,x0,epsilon=1e-6,Theta=0.1,Delta=1e-8,max_iter=10_000):
 pass

Test case:

In [7]:

def rosen(x):
 return (1.0-x[0])**2+2*(x[1]-x[0]**2)**2

x0 = np.array([1.1,1.1])
try:
 x,it = gradient_descent(rosen,x0)
 print(f'minimum found at ({x[0]:.4f},{x[1]:.4f}) after {it} iterations')
 assert np.allclose(x,[1,1])
except:
 print('not implemented yet')

not implemented yet

